On the stability of a Cauchy type functional equation
نویسندگان
چکیده
منابع مشابه
Non-Archimedean stability of Cauchy-Jensen Type functional equation
In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces
متن کاملnon-archimedean stability of cauchy-jensen type functional equation
in this paper we investigate the generalized hyers-ulamstability of the following cauchy-jensen type functional equation$$qbig(frac{x+y}{2}+zbig)+qbig(frac{x+z}{2}+ybig)+qbig(frac{z+y}{2}+xbig)=2[q(x)+q(y)+q(z)]$$ in non-archimedean spaces
متن کاملOn a new type of stability of a radical cubic functional equation related to Jensen mapping
The aim of this paper is to introduce and solve the radical cubic functional equation $fleft(sqrt[3]{x^{3}+y^{3}}right)+fleft(sqrt[3]{x^{3}-y^{3}}right)=2f(x)$. We also investigate some stability and hyperstability results for the considered equation in 2-Banach spaces.
متن کاملCauchy–rassias Stability of Homomorphisms Associated to a Pexiderized Cauchy–jensen Type Functional Equation
We use a fixed point method to prove the Cauchy–Rassias stability of homomorphisms associated to the Pexiderized Cauchy–Jensen type functional equation r f ( x+ y r ) + sg ( x− y s ) = 2h(x), r,s ∈ R\{0}
متن کاملOn Ulam's Type Stability of the Cauchy Additive Equation
We prove a general result on Ulam's type stability of the functional equation f(x + y) = f(x) + f(y), in the class of functions mapping a commutative group into a commutative group. As a consequence, we deduce from it some hyperstability outcomes. Moreover, we also show how to use that result to improve some earlier stability estimations given by Isaac and Rassias.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2018
ISSN: 2391-4661
DOI: 10.1515/dema-2018-0026